
AIAA 98-3007

Diane Poirier, Steven R. Allmaras, Douglas R. McCarthy,
Matthew F. Smith, Francis Y. Enomoto

Albuquerque NM, June 18 1998

Overview

• Introduction
• CGNS Conceptual Entity: The SIDS
• CGNS Physical Entities:

– The ADF Core
– The CGNS Library

• Examples of Implementation
• Current Development
• Brief History of the CGNS Project
• Conclusion

Introduction
• Objective: To offer the opportunity for seamless communication

of CFD analysis data between sites, applications and
system architectures.

• Motivation: The disparity of data file format reduces the cost
effectiveness of CFD while impairing its development.

• Definition: The CFD General Notation System (CGNS) was
conceived to provide a general, portable and
extensible standard for the storage and retrieval of
CFD analysis data.

• CGNS Elements:
– Conceptual entity: Collection of conventions for the archiving of

CFD data.
– Physical entity: Software that performs I/O operations in

accordance with the defined concepts.

CGNS Conceptual Entity :
The Standard Interface Data Structures (SIDS)

• The SIDS constitutes the essence of CGNS. It defines:
– The intellectual content of CFD-related data
– The organizational data structure
– The naming conventions

• Principal Characteristics of the SIDS:
– Hierarchical data structure
– Highly descriptive way of recording the data
– Ability to include unlimited documentation
– Complete and explicit problem description
– Layered so that much of the data structures are optional

NCells, NVertices

GridCoordinates_t

FlowSolutions_t +

ZoneGridConnec._t

ZoneBC_t

Auxiliary-Data*

Zone_t +

NCells, NVertices

GridCoordinates_t

FlowSolutions_t +

ZoneGridConnect._t

ZoneBC_t

Elements_t

Auxiliary-Data*

ZoneUnstruct._t +

GoverningEquations_t

ViscosityModel_t

TurbulenceModel_t

GasModel_t

ThermalCond.Model_t

TurbulenceClosure_t

Descriptor_t +

EquationDimension

FlowEquationSet_t

FamilyBC_t

GeometryRef._t

Descriptor_t +

Family_t +

Descriptor_t +

Referenc.State_t

DataClass_t

Dimens.Units_t

FlowEq.Set_t

Converg.History_t

Auxiliary-Data*

CGNSBase_t +

CGNS High Levels Chart

Note: Auxiliary-Data is used here to group the data structures
 containing auxiliary data. It is not a data structure of CGNS.
Note: Auxiliary-Data is used here to group the data structures
 containing auxiliary data. It is not a data structure of CGNS.

Grid Coordinates, Flow Solutions and Zone Connectivity
Data Structures

DataArray_t + Rind_t

DimensionalUnits_t DataClass_t

Descriptor_t +

GridCoordinates_t

GridConnectivity_t +

GridConnectivity1to1_t +

OversetHoles_t +

Descriptor_t +

ZoneGridConnectivity_t

DataArray_t + Rind_t

DimensionalUnits_t DataClass_t

Descriptor_t GridLocation_t

FlowSolution_t +

Zone_t +

CGNSBase_t +

GridCoordinates_t FlowSolution_t +

BCType_t Auxiliary-Data*

PointList/Range InwardNormals

FamilyName

GridLocation_t BCTypeSimple BCDataNeumann BCDataDirichlet

BCDataSet_t +

BC_t +

Descriptor_t + DataClass_t

ReferenceState_t DimensionalUnits_t

Auxiliary-Data*

ZoneBC_t ZoneGridConnectivity_t

Zone_t +

CGNSBase_t +

Zone Boundary Conditions Data Structure

Note: Auxiliary-Data is used here to group the data structures
 containing auxiliary data. It is not a data structure of CGNS.
Note: Auxiliary-Data is used here to group the data structures
 containing auxiliary data. It is not a data structure of CGNS.

Globally Applicable Data and Precedence

ReferenceState_t

BC_t + ReferenceState_t

ZoneBC_t ReferenceState_t

Zone_t + ReferenceState_t

CGNSBase_t +

Global default

Zone default

Zone boundary conditions default

A specific boundary condition

CGNS Physical Entities

• The (ADF) Core:
– The Advanced Data Format (ADF) Core is a set of software

routines performing I/O operations to/from an extremely
general database system consisting of ADF files.

• The CGNS Library:
– The CGNS Library is an Application Programming Interface

facilitating higher level access of the data contained in an
ADF database. The CGNS Library is built on top of the ADF
Core and does not perform any direct I/O operation.

ADF Core Characteristics
• Hierarchical data structure

– Quickly traversed and sorted
– No need to process irrelevant data

• Based on a single data structure called an ADF node
• Directed graph
• May encompass several ADF files through the use of links
• ADF database is self describing
• Supports any type of data (integer, real, character, complex, byte, link …)
• Software written in ANSI C to insure its portability
• Complete Fortran and C interface
• Stored in compact C binary format
• Independent of system architectures (Cray/Unicos, Sun/Solaris, SGI/IRIX,

IBM/AIX, DEC-Alpha/OSF, Intel=Paragon)
• Universal database (not specific to CFD only)

F1 F2

F4 F5

F3

Root

ADF File #2

N3 N4

N1 L1

N5 N6 L2

N2

Root

ADF File #1

ADF Core

ADF Node Content

• ID: A unique identifier to access a node within a file.
• Name: A character field used to name the node. It must be unique for a

given parent.
• Label: A character field used to described the type of information contained

in the node.
• Data type: A character field specifying the type of data (e.g. real, complex)

associated with the node.
• Number of dimensions: The dimensionality of the data.
• Dimensions: An integer vector containing the number of elements within

each dimension.
• Data: The data associated with the node.

• Number of sub-nodes: The number of children directly attached to a node.
• Name of sub-nodes: The list of children names.

• The ADF Core is composed of 34 low level functions performing
the following operations:

� open or close ADF file
� read or set the data binary format
� get the root-id or a node-id
� create, delete or move a node
� create, read or test a node link
� get the children of a node
� read or write the constituents of a node: name, label, data type,

dimension, dimension vector and data
� perform version and error control

Functions of the ADF Core

SIDS-to-ADF Mapping of Upper Levels

Structured Zone Node
Label = Zone_t, Name = (user defined)

Data Type = I4, Dimension = 2, Dim.Vector = IndexDimension,2
Data = VertexSize[IndexDimension], CellSize[IndexDimension]

Unstructured Zone Node
Label = ZoneUnstructured_t, Name = (user defined)

Data Type = I4, Dimension = 2, Dim.Vector = IndexDimension,2
Data = VertexSize[IndexDimension], CellSize[IndexDimension]

Family Node
Label = Family_t, Name = (user defined)

Data Type = MT, Dimension = N/A, Dim.Vector = N/A
Data = N/A

CGNSBase Node
Label = CGNSBase_t, Name= (user defined)
Data Type=I4, Dimension=1, Dim.Vector=1

Data = IndexDimension

CGNSBase_t : = {
 int IndexDimension;
 List (Zone_t<IndexDimension>Zone1,…ZoneN);
 …}

 Zone_t<IndexDimension> : = {
 int[IndexDimension] VertexSize, CellSize;
 …}

CGNSBase_t : = {
 int IndexDimension;
 List (Zone_t<IndexDimension>Zone1,…ZoneN);
 …}

 Zone_t<IndexDimension> : = {
 int[IndexDimension] VertexSize, CellSize;
 …}

int cg_nbases(int FileNo, int *nbases);

int cg_base_read(int FileNo, int BaseNo,
char *BaseName, int *IndexDimension);

int cg_nzones(int FileNo, int BaseNo, int *nzones);

int cg_zone_read(int FileNo, int BaseNo, int ZoneNo,
char *ZoneName, int *ZoneSize);

int cg_nbases(int FileNo, int *nbases);

int cg_base_read(int FileNo, int BaseNo,
char *BaseName, int *IndexDimension);

int cg_nzones(int FileNo, int BaseNo, int *nzones);

int cg_zone_read(int FileNo, int BaseNo, int ZoneNo,
char *ZoneName, int *ZoneSize);

The Library Reflects Precisely the SIDS and Mapping

Name=ZoneName
Label=Zone_t
Data type=I4, Dimensions=IndexDim x 2
Data=ZoneSize[]=VertexSize[], Cell Size[]

Name=BaseName
Label=CGNSBase_t
Data type=I4, Dimension=1
Data = IndexDimension

2) Mapping SIDS to ADF1) SIDS

3) Mid-Level Library Functions

• Communication Storage Media <=> Internal Database
int cg_open(char *filename, int mode, int *fn);

int cg_close(int fn);

• Internal Representation
C-Structures Organized Hierarchically (SIDS)

• Communication Internal Database <=> User-Application
46 Functions

• Exception: Large Arrays
Keep ADF-ID in Internal Database Instead of Entire Array

• Reduce memory usage
• Improve execution speed

CGNS Library Design Philosophy

Data Flow

CFD
Application

CFD
Application APIAPI

Internal Data
Representation
Internal Data

Representation

ADF CoreADF Core Storage MediaStorage Media

• C & Fortran functions
C: cg_name

Fortran: cg_name_f

• Error Status = ier. If ier!=0, error detected.
C: return value
Fortran: extra argument

• Platform Independent
CRAY, SGI-IRIX, DEC-Alpha, SunOS, HP, IBM

CGNS Library: General Remarks

Examples of Implementation:

cg_open(filename, MODE_READ, &fn);

cg_nbases(fn, &nbases);

for (B=1; B<=nbases; B++) {

cg_base_read(fn, B, BaseName, &IndexDim);

cg_nzones(fn, B, &nzones);

for (Z=1; Z<=nzones; Z++) {

cg_zone_read(fn, B, Z, ZoneName, ZoneSize)

cg_coord_read(fn,B,Z,“CoordinateX”,RealSingle,
RangeMin, RangeMax, X);

}
}
cg_close(fn);

1. Read bases, zones & coordinates

Examples of Implementation:

Given fn, B, Z:

cg_nsols(fn, B, Z, nsolutions);

for (S=1, S<=nsolutions, S++) {

cg_sol_info(fn, B, Z, S, SolutionName, GridLocation);

cg_nfields(fn, B, Z, S, nfields);

for (F=1; F<=nfields; F++) {
cg_field_info(fn, B, Z, S, F, DataType, FieldName);

cg_field_read(fn, B, Z, S, FieldName, RealDouble,
RangeMin, RangeMax, DataArray);

}
}

2. Read Solutions

• Extension to Unstructured Meshes

– Use existing CGNS hierarchy as much as possible.
Incorporate changes only where needed to support
unstructured grids.

– Define new unstructured-grid zones
• same as structured-grid zones except for connectivity

information
– Define unstructured-grid connectivity information

• element based connectivity
• arranged by element type

Current Development

1.

GridCoordinates_t FlowSolutions_t + Elements_t ZoneGridConnectivity_t ZoneBC_t

 ZoneUnstructured_t +

Unstructured Zone:
• Vertex size: number of nodes
• Cell size: number of elements of highest dimension

• Element Sections:
• Section name: unique for a zone
• Element type: Hexa_8, Tetra_4, Penta_6, Quad_4, Tri_3, etc…

NPE = NodePerElement(ElementType)
• Start and end index: element number of first and last elements

nelem = end - start + 1
• Elements array:

node(1,1), node(1,2) … node(1,NPE)
node(nelem,1), node(nelem,2), … node(nelem,NPE)

Unstructured Zone

Existing structures
Under development

• Add Geometry-to-Mesh Association

– Necessary for:
• Quick response to design changes
• Mesh adaptation
• Analysis and Display of Results

– Objectives:
• Compatible to the CGNS System
• Minimum Changes to the Existing SIDS
• Reference data in CAD Files
• Associate CAD Data to Mesh, Solution Data and Boundary

Conditions

Current Development

2.

Concept: Layer of Indirection

Mesh EntitiesMesh Entities Intermediate Object
CFD Family

Intermediate Object
CFD Family Geometry DataGeometry Data

• Rarely a 1-to-1 connection between mesh regions & geometric entities.

• Association independent of changes to mesh & geometry.

• Boundary conditions & material properties can be defined on families:
- Independent of mesh and geometry.
- Defined only once.

Brief History of the CGNS Project

• 1994-1995:
– Series of meetings between Boeing and NASA addressing means of

improving technology transfer from NASA to Industry: The main
impediment to technology transfer is the disparity of file formats.

• 1995-1998:
– Development of the CGNS System (SIDS, ADF) at Boeing Seattle,

under NASA Contract with participation from:
• Boeing Commercial Aircraft Group, Seattle
• NASA Ames/Langley/Lewis Research Centers
• Boeing St-Louis (former McDonnell Douglas Corporation)
• Arnold Engineering Development Center, for the NPARC Alliance
• Wright-Patterson Air Force Base
• ICEM CFD Engineering Corporation

• 1997-1998:
– Development of the CGNS Library.
– Institution of the CGNS website (http://www.cgns.org) and first official

release of the CGNS software and documentation.

Conclusion
• defines conventions for an extremely complete problem description
• hierarchical data structure optimizes the performance of the data exchange
• machine independent compact binary data files
• most data structures are supported by the CGNS library
• version 1.0 available at www.cgns.org.

• implemented successfully in CFL3D, OVERFLOW, ICEM-CFD Visual3,
PEGASUS, ICEM-CFD Output-Interfaces, as well as translators for Plot3D,
NPARC, TLNS3D, WIND

• version 1.1 planned for end of September 1998 includes:
– CGNS Library coverage of the entire SIDS
– Geometry-to-Mesh Association and Unstructured Mesh

• supports seamless communication of analysis data between user sites
system architectures, and CFD applications.

• should lead to the development of shared, reusable software selected on
technical merit without concern for I/O compatibility.

